z-logo
open-access-imgOpen Access
Late Passage Cultivation Induces Aged Astrocyte Phenotypes in Rat Primary Cultured Cells
Author(s) -
Minji Bang,
Edson Luck Gonzales,
Chan Young Shin,
Kyoung Ja Kwon
Publication year - 2021
Publication title -
biomolecules and therapeutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.977
H-Index - 36
eISSN - 2005-4483
pISSN - 1976-9148
DOI - 10.4062/biomolther.2020.175
Subject(s) - astrocyte , phenotype , primary (astronomy) , biology , microbiology and biotechnology , medicine , neuroscience , genetics , bioinformatics , gene , central nervous system , physics , astronomy
Astrocytes play various important roles such as maintaining brain homeostasis, supporting neurons, and secreting inflammatory mediators to protect the brain cells. In aged subjects, astrocytes show diversely changed phenotypes and dysfunctions. But, the study of aged astrocytes or astrocytes from aged subjects is not yet sufficient to provide a comprehensive understanding of their important processes in the regulation of brain function. In this study, we induced an in vitro aged astrocyte model through late passage cultivation of rat primary cultured astrocytes. Astrocytes were cultured until passage 7 (P7) as late passage astrocytes and compared with passage 1 (P1) astrocytes as early passage astrocytes to confirm the differences in phenotypes and the effects of serial passage. In this study, we confirmed the morphological, molecular, and functional changes of late passage astrocytes showing aging phenotypes through SA-β-gal staining and measurement of nuclear size. We also observed a reduced expression of inflammatory mediators including IL-1β, IL-6, TNFα, iNOS, and COX2, as well as dysregulation of wound-healing, phagocytosis, and mitochondrial functions such as mitochondrial membrane potential and mitochondrial oxygen consumption rate. Culture-conditioned media obtained from P1 astrocytes promoted neurite outgrowth in immature primary cultures of rat cortices, which is significantly reduced when we treated the immature neurons with the culture media obtained from P7 astrocytes. These results suggest that late passage astrocytes show senescent astrocyte phenotypes with functional defects, which makes it a suitable model for the study of the role of astrocyte senescence on the modulation of normal and pathological brain aging.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here