z-logo
open-access-imgOpen Access
USP19 Suppresses Th17-Driven Pathogenesis in Autoimmunity
Author(s) -
Jing Zhang,
Ronald J. Bouch,
Maxim G Blekhman,
Zhiheng He
Publication year - 2021
Publication title -
the journal of immunology
Language(s) - Uncategorized
Resource type - Journals
eISSN - 1550-6606
pISSN - 0022-1767
DOI - 10.4049/jimmunol.2100205
Subject(s) - autoimmunity , coactivator , rar related orphan receptor gamma , ubiquitin , pathogenesis , transcription factor , deubiquitinating enzyme , immunology , biology , microbiology and biotechnology , cancer research , gene , genetics , antibody
Th17 cells have emerged as a chief pathogenic cell type in murine models of autoimmunity and human autoimmune diseases. Th17 cells are markedly plastic in their pathogenic potential, as they can adopt pro- or anti-inflammatory programming under distinct conditions. The specific mechanism underlying the plasticity of Th17 pathogenesis remains elusive. In this study, we found that Th17 lineage-specific transcription factor RORγt directly bound to the promoters of genes engaged in the ubiquitination pathway and thus upregulated their expression in pathogenic Th17 cells. We observed that ubiquitination activity correlated with Th17-related pathology in the context of autoimmunity. Consistent with this finding, the deubiquitinase USP19 was shown to suppress pathogenic Th17 differentiation in vitro and Th17-mediated pathogenesis in vivo. Mechanistically, USP19 removed the K63-linked ubiquitin chain from RORγt lysine 313, which is essential for recruiting the coactivator SRC3. Collectively, our findings indicate that USP19 selectively suppresses the pathogenic potential of Th17 cells and offer novel strategies for treating autoimmune diseases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom