Open Access
Comparing the Utility of Industry ROV and Hybrid-AUV Imagery for Surveys of Fish Along a Subsea Pipeline
Author(s) -
Todd Bond,
Jane Prince,
Dianne L. McLean,
Julian C. Partridge
Publication year - 2020
Publication title -
marine technology society journal/marine technology society journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.23
H-Index - 43
eISSN - 1948-1209
pISSN - 0025-3324
DOI - 10.4031/mtsj.54.3.5
Subject(s) - remotely operated underwater vehicle , subsea , remotely operated vehicle , marine engineering , underwater , environmental science , submarine pipeline , fishery , pipeline (software) , pipeline transport , oceanography , engineering , computer science , geology , biology , environmental engineering , artificial intelligence , robot , mobile robot , mechanical engineering
Abstract In recent years, video footage obtained from routine industry surveys using remotely operated vehicles (ROVs) has been used to assess fish assemblages associated with offshore oil and gas infrastructure. However, as industry moves towards using autonomous underwater vehicles (AUVs), it is important to understand how such a change may affect assessments of fish assemblages and whether these data collected from AUVs can be directly compared to those collected from historic and future ROV footage. In an extremely rare opportunity, we compare fish assemblages surveyed by an industrial ROV and an industrial hybrid-AUV (H-AUV) along the same 2,060-m section of subsea pipeline, at the same time of day, within 1 day of each other. A total of 206 transects, each 20 m in length, were analyzed, recording 406 fish from 10 species. The H-AUV recorded all 10 fish species, while the ROV recorded seven. Mean species richness was ~4% higher for H-AUV, and mean abundance was ~21% higher for ROV; these differences can be considered negligible. Multivariate analysis revealed nonsignificant differences in species composition between survey methods. This result suggests that future surveys of fish at this pipeline using a similar H-AUV can yield comparable results to ROV and, as such, facilitate comparison to historical ROV imagery. Future surveys of pipelines with AUV should consider adding extra lighting and high-definition cameras onto booms similar to those operating on ROVs, which will provide a useful field of view into pipeline spans and make it easier to identify fish. Our study provides insight into the utility and comparability of industry ROV and AUV pipeline inspection footage for the assessment of fish assemblages associated with subsea pipelines, which is used to inform policies and practices on the installation and decommissioning of subsea infrastructure.