Open Access
Comparison of the Observed Mixed Layer Depth in the Lee of the Hawaiian Island to the Modeled Mixed Layer Depth of the Regional Navy Coastal Ocean Model
Author(s) -
Jeffery Todd Rayburn,
Vladimir E. Kamenkovich
Publication year - 2013
Publication title -
marine technology society journal/marine technology society journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.23
H-Index - 43
eISSN - 1948-1209
pISSN - 0025-3324
DOI - 10.4031/mtsj.47.1.3
Subject(s) - mixed layer , navy , geology , mesoscale meteorology , data assimilation , ocean current , oceanography , climatology , sea surface temperature , meteorology , geography , archaeology
Abstract This study evaluates the ability of the Hawaii Regional Navy Coastal Ocean Model to accurately predict the depth of the surface mixed layer in the lee of the Hawaiian Islands. Accurately modeling the depth of the surface mixed layer in this complex wake island environment is important to naval operations because the area hosts numerous training exercises. The simulated data were compared to CTD data collected from sea gliders, and tests for correlation were conducted. For mixed layer depths that did show correlation, match-paired t tests were used to determine the significance of the correlations. It was determined that the Hawaii Regional Navy Coastal Ocean Model has difficulty accurately predicting the depth of the surface mixed layer. It was also determined that the model has difficulty with unusual oceanographic features such as mode water eddies. These features are too uncommon and short-lived to be depicted in the climatology data. The climatology data are a major component of the synthetic profiles that the model generates, and these profiles tend to smooth out the unusual subsurface isothermal layer.List of AbbreviationsBT ‐ bathythermographsCCE ‐ cold core eddyCOAMPS ‐ Coupled Ocean/Atmosphere Mesoscale Prediction SystemCTD ‐ conductivity, temperature, and depthGDEM ‐ Generalized Digital Environmental ModelIR ‐ infraredMLD ‐ mixed layer depthMODAS ‐ Modular Ocean Data Assimilation SystemMOODS ‐ Master Oceanographic Observation DatasetNCODA ‐ Navy Coupled Ocean Data AssimilationNCOM1 ‐ Hawaii Regional Navy Coastal Ocean Model with in situ assimilationNCOM2 ‐ Hawaii Regional Navy Coastal Ocean Model without in situ assimilationPAVE ‐ Profile Analysis and Visualization EnvironmentSSHa ‐ sea surface height anomaly derived from altimetrySST ‐ sea surface temperatureWCE ‐ warm core eddy