z-logo
open-access-imgOpen Access
Deep learning towards detecting dementia
Publication year - 2021
Publication title -
international journal of healthcare information systems and informatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.266
H-Index - 13
eISSN - 1555-340X
pISSN - 1555-3396
DOI - 10.4018/ijhisi.20211001oa23
Subject(s) - dementia , computer science , artificial intelligence , transfer of learning , deep learning , classifier (uml) , machine learning , pattern recognition (psychology) , disease , medicine , pathology
Dementia is a brain disorder that causes loss of memory leading to disruption in the normal course of life of an individual. It is emerging as a global health problem in adults with age 65 years or above. Early diagnosis of dementia has gone forth as a key research zone with the aim of early identification for hindering the advancement. Deep learning provides path-breaking applications in medical imaging. This study provides a detailed summary of different implementation approaches of deep learning for detecting the disease. Transfer learning for multi-class classification has also been explored for detecting dementia. The pre-trained convolutional network, AlexNet is used with 3 optimizers, SGDM, ADAM, RMSProp. A Dataset of 60 MRI images is taken from the OASIS dataset. Accuracy of the methods has been compared and the best parameters including classifier, learning rate, and a batch size of the model have been identified. SGDM classifier with a learning rate 10-4 and a mini-batch size of 10 have shown the best performance in a reasonable time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here