z-logo
open-access-imgOpen Access
A hybrid between TOA and levy flight trajectory for solving different cluster problems [iccicc18 #107]
Publication year - 2021
Publication title -
international journal of cognitive informatics and natural intelligence
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.164
H-Index - 24
eISSN - 1557-3966
pISSN - 1557-3958
DOI - 10.4018/ijcini.20211001oa26
Subject(s) - cluster analysis , computer science , data mining , trajectory , cluster (spacecraft) , correlation clustering , cure data clustering algorithm , artificial intelligence , physics , astronomy , programming language
In data analysis applications for extraction of useful knowledge, clustering plays an important role. The major shortcoming of traditional clustering algorithms is exhibiting poor performance in solving complex data cluster problems. This research paper introduces a novel hybrid optimization technique based clustering approach. This paper is designed with two main objectives: designing efficient function optimization algorithm and developing advanced data clustering approach. In achieving the first objective, the standard TOA is first enhanced by hybridizing with Lévy flight trajectory and benchmarked on 23 functions. A new clustering approach is developed by conjoining k-means algorithm and Lévy flight TOA. Tested the numerical complexity of the proposed novel clustering approach on 10 UCI clustering datasets and 4 web document cluster problems. Conducted several simulation experiments and done an analysis of the results. The obtained graphical and statistical analysis reveals that the proposed novel clustering approach yields better quality clusters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here