z-logo
open-access-imgOpen Access
Brain Tumor Segmentation from Multimodal MRI Data based on GLCM and SVM Classifier
Publication year - 2021
Publication title -
international journal of cognitive informatics and natural intelligence
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.164
H-Index - 24
eISSN - 1557-3966
pISSN - 1557-3958
DOI - 10.4018/ijcini.20211001oa02
Subject(s) - computer science , support vector machine , artificial intelligence , segmentation , pattern recognition (psychology) , classifier (uml) , image segmentation , gray level , computer vision , pixel
The segmentation of MRI brain tumors utilizes computer technology to segment and label tumors and normal tissues automatically on multimodal brain images, which plays an important role in disease diagnosis, treatment planning, and surgical navigation. We propose a solution using gray-level co-occurrence matrix (GLCM) texture and an ensemble Support Vector Machine (SVM) structure.This manuscript per the authors focus on the effects of GLCM texture on brain tumor segmentation. The result is different from the application of the GLCM texture in other types of image processing.The experimental material was a dataset called BraTs2015. The segmented five different labels are normal brain, necrosis, edema, non-enhancing tumor, and enhancing tumor. The proposed model was verified with the Dice coefficient. The result demonstrated that this method has a better capacity and higher segmentation accuracy with a low computation cost.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here