Open Access
A Bayesian CNN-LSTM Model for Sentiment Analysis in Massive Open Online Courses MOOCs
Author(s) -
Khaoula Mrhar,
Lamia Benhiba,
Samir Bourekkache,
Mounia Abik
Publication year - 2021
Publication title -
international journal of emerging technologies in learning/international journal: emerging technologies in learning
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.454
H-Index - 24
eISSN - 1868-8799
pISSN - 1863-0383
DOI - 10.3991/ijet.v16i23.24457
Subject(s) - sentiment analysis , computer science , dropout (neural networks) , artificial intelligence , deep learning , tracing , machine learning , convolutional neural network , naive bayes classifier , bayesian probability , support vector machine , operating system
Massive Open Online Courses (MOOCs) are increasingly used by learn-ers to acquire knowledge and develop new skills. MOOCs provide a trove of data that can be leveraged to better assist learners, including behavioral data from built-in collaborative tools such as discussion boards and course wikis. Data tracing social interactions among learners are especially inter-esting as their analyses help improve MOOCs’ effectiveness. We particular-ly perform sentiment analysis on such data to predict learners at risk of dropping out, measure the success of the MOOC, and personalize the MOOC according to a learner’s behavior and detected emotions. In this pa-per, we propose a novel approach to sentiment analysis that combines the advantages of the deep learning architectures CNN and LSTM. To avoid highly uncertain predictions, we utilize a Bayesian neural network (BNN) model to quantify uncertainty within the sentiment analysis task. Our em-pirical results indicate that: 1) The Bayesian CNN-LSTM model provides interesting performance compared to other models (CNN-LSTM, CNN, LSTM) in terms of accuracy, precision, recall, and F1-Score; and 2) there is a high correlation between the sentiment in forum posts and the dropout rate in MOOCs.