
Answer-Aware Question Generation from Tabular and Textual Data using T5
Author(s) -
Saichandra Pandraju,
Sakthi Ganesh Mahalingam
Publication year - 2021
Publication title -
international journal of emerging technologies in learning/international journal: emerging technologies in learning
Language(s) - English
Resource type - Journals
eISSN - 1868-8799
pISSN - 1863-0383
DOI - 10.3991/ijet.v16i18.25121
Subject(s) - computer science , transformer , information retrieval , baseline (sea) , natural language processing , artificial intelligence , data mining , oceanography , physics , quantum mechanics , voltage , geology
Automatic Question Generation (AQG) systems are applied in a myriad of domains to generate questions from sources such as documents, images, knowledge graphs to name a few. With the rising interest in such AQG systems, it is equally important to recognize structured data like tables while generating questions from documents. In this paper, we propose a single model architecture for question generation from tables along with text using “Text-to-Text Transfer Transformer” (T5) - a fully end-to-end model which does not rely on any intermediate planning steps, delexicalization, or copy mechanisms. We also present our systematic approach in modifying the ToTTo dataset, release the augmented dataset as TabQGen along with the scores achieved using T5 as a baseline to aid further research.