
Machine Learning-Based Student Emotion Recognition for Business English Class
Author(s) -
Yuxin Cui,
Sheng Wang,
Ran Zhao
Publication year - 2021
Publication title -
international journal of emerging technologies in learning/international journal: emerging technologies in learning
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.454
H-Index - 24
eISSN - 1868-8799
pISSN - 1863-0383
DOI - 10.3991/ijet.v16i12.23313
Subject(s) - boredom , class (philosophy) , computer science , facial expression , artificial intelligence , emotion detection , active learning (machine learning) , emotion recognition , psychology , social psychology
Traditional English teaching model neglects student emotions, making many tired of learning. Machine learning supports end-to-end recognition of learning emotions, such that the recognition system can adaptively adjust the learning difficulty in English classroom. With the help of machine learning, this paper presents a method to extract the facial expression features of students in business English class, and establishes a student emotion recognition model, which consists of such modules as emotion mechanism, signal acquisition, analysis and recognition, emotion understanding, emotion expression, and wearable equipment. The results show that the proposed emotion recognition model monitors the real-time emotional states of each student during English learning; upon detecting frustration or boredom, machine learning will timely switch to the contents that interest the student or easier to learn, keeping the student active in learning. The research provides an end-to-end student emotion recognition system to assist with classroom teaching, and enhance the positive emotions of students in English learning.