Premium
Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals
Author(s) -
Chen Xiaohong,
Pouzo Demian
Publication year - 2012
Publication title -
econometrica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 16.7
H-Index - 199
eISSN - 1468-0262
pISSN - 0012-9682
DOI - 10.3982/ecta7888
Subject(s) - mathematics , estimator , nonparametric statistics , quantile , minimax , norm (philosophy) , moment (physics) , nonparametric regression , conditional expectation , rate of convergence , mathematical optimization , statistics , physics , classical mechanics , channel (broadcasting) , electrical engineering , political science , law , engineering
This paper studies nonparametric estimation of conditional moment restrictions in which the generalized residual functions can be nonsmooth in the unknown functions of endogenous variables. This is a nonparametric nonlinear instrumental variables (IV) problem. We propose a class of penalized sieve minimum distance (PSMD) estimators, which are minimizers of a penalized empirical minimum distance criterion over a collection of sieve spaces that are dense in the infinite‐dimensional function parameter space. Some of the PSMD procedures use slowly growing finite‐dimensional sieves with flexible penalties or without any penalty; others use large dimensional sieves with lower semicompact and/or convex penalties. We establish their consistency and the convergence rates in Banach space norms (such as a sup‐norm or a root mean squared norm), allowing for possibly noncompact infinite‐dimensional parameter spaces. For both mildly and severely ill‐posed nonlinear inverse problems, our convergence rates in Hilbert space norms (such as a root mean squared norm) achieve the known minimax optimal rate for the nonparametric mean IV regression. We illustrate the theory with a nonparametric additive quantile IV regression. We present a simulation study and an empirical application of estimating nonparametric quantile IV Engel curves.