Premium
Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection
Author(s) -
Andrews Donald W. K.,
Soares Gustavo
Publication year - 2010
Publication title -
econometrica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 16.7
H-Index - 199
eISSN - 1468-0262
pISSN - 0012-9682
DOI - 10.3982/ecta7502
Subject(s) - moment (physics) , mathematics , inference , selection (genetic algorithm) , class (philosophy) , power (physics) , asymptotic analysis , statistics , computer science , physics , classical mechanics , artificial intelligence , quantum mechanics
The topic of this paper is inference in models in which parameters are defined by moment inequalities and/or equalities. The parameters may or may not be identified. This paper introduces a new class of confidence sets and tests based on generalized moment selection (GMS). GMS procedures are shown to have correct asymptotic size in a uniform sense and are shown not to be asymptotically conservative. The power of GMS tests is compared to that of subsampling, m out of n bootstrap, and “plug‐in asymptotic” (PA) tests. The latter three procedures are the only general procedures in the literature that have been shown to have correct asymptotic size (in a uniform sense) for the moment inequality/equality model. GMS tests are shown to have asymptotic power that dominates that of subsampling, m out of n bootstrap, and PA tests. Subsampling and m out of n bootstrap tests are shown to have asymptotic power that dominates that of PA tests.