z-logo
Premium
Identifying Effects of Multivalued Treatments
Author(s) -
Lee Sokbae,
Salanié Bernard
Publication year - 2018
Publication title -
econometrica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 16.7
H-Index - 199
eISSN - 1468-0262
pISSN - 0012-9682
DOI - 10.3982/ecta14269
Subject(s) - monotonic function , identification (biology) , class (philosophy) , mathematical economics , function (biology) , mathematics , mathematical optimization , econometrics , computer science , artificial intelligence , mathematical analysis , botany , evolutionary biology , biology
Multivalued treatment models have typically been studied under restrictive assumptions: ordered choice, and more recently, unordered monotonicity. We show how treatment effects can be identified in a more general class of models that allows for multidimensional unobserved heterogeneity. Our results rely on two main assumptions: treatment assignment must be a measurable function of threshold‐crossing rules, and enough continuous instruments must be available. We illustrate our approach for several classes of models.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom