Premium
Earnings and Consumption Dynamics: A Nonlinear Panel Data Framework
Author(s) -
Arellano Manuel,
Blundell Richard,
Bonhomme Stéphane
Publication year - 2017
Publication title -
econometrica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 16.7
H-Index - 199
eISSN - 1468-0262
pISSN - 0012-9682
DOI - 10.3982/ecta13795
Subject(s) - econometrics , economics , earnings , consumption (sociology) , shock (circulatory) , unobservable , panel study of income dynamics , panel data , skewness , population , nonparametric statistics , labour economics , accounting , social science , sociology , medicine , demography
We develop a new quantile‐based panel data framework to study the nature of income persistence and the transmission of income shocks to consumption. Log‐earnings are the sum of a general Markovian persistent component and a transitory innovation. The persistence of past shocks to earnings is allowed to vary according to the size and sign of the current shock. Consumption is modeled as an age‐dependent nonlinear function of assets, unobservable tastes, and the two earnings components. We establish the nonparametric identification of the nonlinear earnings process and of the consumption policy rule. Exploiting the enhanced consumption and asset data in recent waves of the Panel Study of Income Dynamics, we find that the earnings process features nonlinear persistence and conditional skewness. We confirm these results using population register data from Norway. We then show that the impact of earnings shocks varies substantially across earnings histories, and that this nonlinearity drives heterogeneous consumption responses. The framework provides new empirical measures of partial insurance in which the transmission of income shocks to consumption varies systematically with assets, the level of the shock, and the history of past shocks.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom