z-logo
Premium
Generalized Method of Integrated Moments for High‐Frequency Data
Author(s) -
Li Jia,
Xiu Dacheng
Publication year - 2016
Publication title -
econometrica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 16.7
H-Index - 199
eISSN - 1468-0262
pISSN - 0012-9682
DOI - 10.3982/ecta12306
Subject(s) - generalized method of moments , method of moments (probability theory) , mathematics , econometrics , statistics , panel data , estimator
We propose a semiparametric two‐step inference procedure for a finite‐dimensional parameter based on moment conditions constructed from high‐frequency data. The population moment conditions take the form of temporally integrated functionals of state‐variable processes that include the latent stochastic volatility process of an asset. In the first step, we nonparametrically recover the volatility path from high‐frequency asset returns. The nonparametric volatility estimator is then used to form sample moment functions in the second‐step GMM estimation, which requires the correction of a high‐order nonlinearity bias from the first step. We show that the proposed estimator is consistent and asymptotically mixed Gaussian and propose a consistent estimator for the conditional asymptotic variance. We also construct a Bierens‐type consistent specification test. These infill asymptotic results are based on a novel empirical‐process‐type theory for general integrated functionals of noisy semimartingale processes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here