Premium
Long Memory via Networking
Author(s) -
Schennach Susanne M.
Publication year - 2018
Publication title -
econometrica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 16.7
H-Index - 199
eISSN - 1468-0262
pISSN - 0012-9682
DOI - 10.3982/ecta11930
Subject(s) - computer science , business
Many time series exhibit “long memory”: Their autocorrelation function decays slowly with lag. This behavior has traditionally been modeled via unit roots or fractional Brownian motion and explained via aggregation of heterogeneous processes, nonlinearity, learning dynamics, regime switching, or structural breaks. This paper identifies a different and complementary mechanism for long‐memory generation by showing that it can naturally arise when a large number of simple linear homogeneous economic subsystems with short memory are interconnected to form a network such that the outputs of the subsystems are fed into the inputs of others. This networking picture yields a type of aggregation that is not merely additive, resulting in a collective behavior that is richer than that of individual subsystems. Interestingly, the long‐memory behavior is found to be almost entirely determined by the geometry of the network, while being relatively insensitive to the specific behavior of individual agents.