z-logo
open-access-imgOpen Access
A measure model for the spread of viral infections with mutations
Author(s) -
Xiaoqian Gong,
Benedetto Piccoli
Publication year - 2022
Publication title -
networks and heterogeneous media
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.732
H-Index - 34
eISSN - 1556-181X
pISSN - 1556-1801
DOI - 10.3934/nhm.2022015
Subject(s) - mathematics , measure (data warehouse) , population , ode , combinatorics , computer science , medicine , environmental health , database
Genetic variations in the COVID-19 virus are one of the main causes of the COVID-19 pandemic outbreak in 2020 and 2021. In this article, we aim to introduce a new type of model, a system coupled with ordinary differential equations (ODEs) and measure differential equation (MDE), stemming from the classical SIR model for the variants distribution. Specifically, we model the evolution of susceptible \begin{document}$ S $\end{document} and removed \begin{document}$ R $\end{document} populations by ODEs and the infected \begin{document}$ I $\end{document} population by a MDE comprised of a probability vector field (PVF) and a source term. In addition, the ODEs for \begin{document}$ S $\end{document} and \begin{document}$ R $\end{document} contains terms that are related to the measure \begin{document}$ I $\end{document} . We establish analytically the well-posedness of the coupled ODE-MDE system by using generalized Wasserstein distance. We give two examples to show that the proposed ODE-MDE model coincides with the classical SIR model in case of constant or time-dependent parameters as special cases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here