
An explicit finite volume algorithm for vanishing viscosity solutions on a network
Author(s) -
John D. Towers
Publication year - 2022
Publication title -
networks and heterogeneous media
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.732
H-Index - 34
eISSN - 1556-181X
pISSN - 1556-1801
DOI - 10.3934/nhm.2021021
Subject(s) - viscosity , conservation law , mathematics , viscosity solution , scalar (mathematics) , convergence (economics) , algorithm , discrete mathematics , mathematical analysis , geometry , physics , thermodynamics , economics , economic growth
In [Andreianov, Coclite, Donadello, Discrete Contin. Dyn. Syst. A, 2017], a finite volume scheme was introduced for computing vanishing viscosity solutions on a single-junction network, and convergence to the vanishing viscosity solution was proven. This problem models \begin{document}$ m $\end{document} incoming and \begin{document}$ n $\end{document} outgoing roads that meet at a single junction. On each road the vehicle density evolves according to a scalar conservation law, and the requirements for joining the solutions at the junction are defined via the so-called vanishing viscosity germ. The algorithm mentioned above processes the junction in an implicit manner. We propose an explicit version of the algorithm. It differs only in the way that the junction is processed. We prove that the approximations converge to the unique entropy solution of the associated Cauchy problem.