z-logo
open-access-imgOpen Access
Finite mechanical proxies for a class of reducible continuum systems
Author(s) -
Franco Cardin,
Alberto Lovison
Publication year - 2014
Publication title -
networks and heterogeneous media
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.732
H-Index - 34
eISSN - 1556-181X
pISSN - 1556-1801
DOI - 10.3934/nhm.2014.9.417
Subject(s) - eigenvalues and eigenvectors , mathematics , class (philosophy) , equivalence (formal languages) , inverse problem , finite set , mathematical analysis , pure mathematics , physics , computer science , quantum mechanics , artificial intelligence
We present the exact finite reduction of a class of nonlinearly perturbed wave equations -typically, a non-linear elastic string- based on the Amann-Conley-Zehnder paradigm. By solving an inverse eigenvalue problem, we establish an equivalence between the spectral finite description derived from A-C-Z and a discrete mechanical model, a well definite finite spring-mass system. By doing so, we decrypt the abstract information encoded in the finite reduction and obtain a physically sound proxy for the continuous problem

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom