Open Access
Convergence of interval AOR method for linear interval equations
Author(s) -
Jahnabi Chakravarty,
Ashiho Athikho,
Manideepa Saha
Publication year - 2022
Publication title -
numerical algebra, control and optimization
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.303
H-Index - 20
eISSN - 2155-3289
pISSN - 2155-3297
DOI - 10.3934/naco.2021006
Subject(s) - mathematics , interval (graph theory) , matrix (chemical analysis) , combinatorics , arithmetic , discrete mathematics , composite material , materials science
A real interval vector/matrix is an array whose entries are real intervals. In this paper, we consider the real linear interval equations \begin{document}$ \bf{Ax} = \bf{b} $\end{document} with \begin{document}$ {{\bf{A}} }$\end{document} , \begin{document}$ \bf{b} $\end{document} respectively, denote an interval matrix and an interval vector. The aim of the paper is to study the numerical solution of the linear interval equations for various classes of coefficient interval matrices. In particular, we study the convergence of interval AOR method when the coefficient interval matrix is either interval strictly diagonally dominant matrices, interval \begin{document}$ L $\end{document} -matrices, interval \begin{document}$ M $\end{document} -matrices, or interval \begin{document}$ H $\end{document} -matrices.