z-logo
open-access-imgOpen Access
The Gelfand problem for the Infinity Laplacian
Author(s) -
Fernando Charro,
Byungjae Son,
Peiyong Wang
Publication year - 2022
Publication title -
mathematics in engineering
Language(s) - English
Resource type - Journals
ISSN - 2640-3501
DOI - 10.3934/mine.2023022
Subject(s) - combinatorics , nabla symbol , omega , mathematics , physics , quantum mechanics
We study the asymptotic behavior as $ p\to\infty $ of the Gelfand problem \begin{document}$ \begin{equation*} \left\{ \begin{aligned} -&\Delta_{p} u = \lambda\,e^{u}&& \text{in}\ \Omega\subset \mathbb{R}^n\\ &u = 0 && \text{on}\ \partial\Omega. \end{aligned} \right. \end{equation*} $\end{document} Under an appropriate rescaling on $ u $ and $ \lambda $, we prove uniform convergence of solutions of the Gelfand problem to solutions of \begin{document}$ \left\{ \begin{aligned} &\min\left\{|\nabla{}u|-\Lambda\,e^{u}, -\Delta_{\infty}u\right\} = 0&& \text{in}\ \Omega,\\ &u = 0\ &&\text{on}\ \partial\Omega. \end{aligned} \right. $\end{document} We discuss existence, non-existence, and multiplicity of solutions of the limit problem in terms of $ \Lambda $.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom