z-logo
open-access-imgOpen Access
Convex duality for principal frequencies
Author(s) -
Lorenzo Brasco
Publication year - 2021
Publication title -
mathematics in engineering
Language(s) - English
Resource type - Journals
ISSN - 2640-3501
DOI - 10.3934/mine.2022032
Subject(s) - mathematics , constant (computer programming) , embedding , eigenvalues and eigenvectors , laplace operator , combinatorics , regular polygon , omega , duality (order theory) , rigidity (electromagnetism) , sobolev space , mathematical analysis , pure mathematics , physics , quantum mechanics , geometry , artificial intelligence , computer science , programming language
We consider the sharp Sobolev-Poincaré constant for the embedding of $ W^{1, 2}_0(\Omega) $ into $ L^q(\Omega) $. We show that such a constant exhibits an unexpected dual variational formulation, in the range $ 1 < q < 2 $. Namely, this can be written as a convex minimization problem, under a divergence–type constraint. This is particularly useful in order to prove lower bounds. The result generalizes what happens for the torsional rigidity (corresponding to $ q = 1 $) and extends up to the case of the first eigenvalue of the Dirichlet-Laplacian (i.e., to $ q = 2 $).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom