
Solutions to a cubic Schrödinger system with mixed attractive and repulsive forces in a critical regime
Author(s) -
Simone Dovetta,
Angela Pistoia
Publication year - 2022
Publication title -
mathematics in engineering
Language(s) - English
Resource type - Journals
ISSN - 2640-3501
DOI - 10.3934/mine.2022027
Subject(s) - omega , bounded function , combinatorics , domain (mathematical analysis) , physics , lambda , beta (programming language) , mathematics , mathematical physics , quantum mechanics , mathematical analysis , computer science , programming language
We study the existence of solutions to the cubic Schrödinger system \begin{document}$ -\Delta u_i = \sum\limits_{j = 1}^m \beta_{ij} u_j^2u_i + \lambda_i u_i\ \hbox{in}\ \Omega,\ u_i = 0\ \hbox{on}\ \partial\Omega,\ i = 1,\dots,m, $\end{document} when $ \Omega $ is a bounded domain in $ \mathbb R^4, $ $ \lambda_i $ are positive small numbers, $ \beta_{ij} $ are real numbers so that $ \beta_{ii} > 0 $ and $ \beta_{ij} = \beta_{ji} $, $ i\neq j $. We assemble the components $ u_i $ in groups so that all the interaction forces $ \beta_{ij} $ among components of the same group are attractive, i.e., $ \beta_{ij} > 0 $, while forces among components of different groups are repulsive or weakly attractive, i.e., $ \beta_{ij} < \overline\beta $ for some $ \overline\beta $ small. We find solutions such that each component within a given group blows-up around the same point and the different groups blow-up around different points, as all the parameters $ \lambda_i $'s approach zero.