z-logo
open-access-imgOpen Access
On an asymptotically log-periodic solution to the graphical curve shortening flow equation
Author(s) -
Dong-Ho Tsai,
Xiao-Liu Wang
Publication year - 2021
Publication title -
mathematics in engineering
Language(s) - English
Resource type - Journals
ISSN - 2640-3501
DOI - 10.3934/mine.2022019
Subject(s) - combinatorics , mathematics
With the help of heat equation, we first construct an example of a graphical solution to the curve shortening flow. This solution $ y\left(x, t\right) \ $has the interesting property that it converges to a log-periodic function of the form \begin{document}$ A\sin \left( \log t\right) +B\cos \left( \log t\right) $\end{document} as$ \ t\rightarrow \infty, \ $where $ A, \ B $ are constants. Moreover, for any two numbers $ \alpha < \beta, \ $we are also able to construct a solution satisfying the oscillation limits \begin{document}$ \liminf\limits_{t\rightarrow \infty}y\left( x,t\right) = \alpha,\ \ \ \limsup\limits _{t\rightarrow \infty}y\left( x,t\right) = \beta,\ \ \ x\in K $\end{document} on any compact subset$ \ K\subset \mathbb{R}. $

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom