z-logo
open-access-imgOpen Access
On $ {L}(2,1) $-labelings of some products of oriented cycles
Author(s) -
Lucas Colucci,
Ervin Győri
Publication year - 2021
Publication title -
mathematical foundations of computing
Language(s) - English
Resource type - Journals
ISSN - 2577-8838
DOI - 10.3934/mfc.2021029
Subject(s) - mathematics , combinatorics , product (mathematics) , arithmetic , geometry
We refine two results of Jiang, Shao and Vesel on the \begin{document}$ L(2,1) $\end{document} -labeling number \begin{document}$ \lambda $\end{document} of the Cartesian and the strong product of two oriented cycles. For the Cartesian product, we compute the exact value of \begin{document}$ \lambda(\overrightarrow{C_m} \square \overrightarrow{C_n}) $\end{document} for \begin{document}$ m $\end{document} , \begin{document}$ n \geq 40 $\end{document} ; in the case of strong product, we either compute the exact value or establish a gap of size one for \begin{document}$ \lambda(\overrightarrow{C_m} \boxtimes \overrightarrow{C_n}) $\end{document} for \begin{document}$ m $\end{document} , \begin{document}$ n \geq 48 $\end{document} .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom