z-logo
open-access-imgOpen Access
Better degree of approximation by modified Bernstein-Durrmeyer type operators
Author(s) -
P. Ν. Agrawal,
Şule Güngör,
Abhishek Kumar
Publication year - 2021
Publication title -
mathematical foundations of computing
Language(s) - English
Resource type - Journals
ISSN - 2577-8838
DOI - 10.3934/mfc.2021024
Subject(s) - mathematics , type (biology) , degree (music) , function (biology) , combinatorics , physics , ecology , evolutionary biology , acoustics , biology
In the present article we investigate a Durrmeyer variant of the generalized Bernstein-operators based on a function \begin{document}$ \tau(x), $\end{document} where \begin{document}$ \tau $\end{document} is infinitely differentiable function on \begin{document}$ [0, 1], \; \tau(0) = 0, \tau(1) = 1 $\end{document} and \begin{document}$ \tau^{\prime }(x)>0, \;\forall\;\; x\in[0, 1]. $\end{document} We study the degree of approximation by means of the modulus of continuity and the Ditzian-Totik modulus of smoothness. A Voronovskaja type asymptotic theorem and the approximation of functions with derivatives of bounded variation are also studied. By means of a numerical example, finally we illustrate the convergence of these operators to certain functions through graphs and show a careful choice of the function \begin{document}$ \tau(x) $\end{document} leads to a better approximation than the generalized Bernstein-Durrmeyer type operators considered by Kajla and Acar [ 11 ].

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom