z-logo
open-access-imgOpen Access
Existence and cost of boundary controls for a degenerate/singular parabolic equation
Author(s) -
Umberto Biccari,
Víctor Hernández-Santamaría,
Judith Vancostenoble
Publication year - 2022
Publication title -
mathematical control and related fields
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.658
H-Index - 21
eISSN - 2156-8472
pISSN - 2156-8499
DOI - 10.3934/mcrf.2021032
Subject(s) - mathematics , combinatorics , arithmetic
In this paper, we consider the following degenerate/singular parabolic equation\begin{document}$ \begin{align*} u_t -(x^\alpha u_{x})_x - \frac{\mu}{x^{2-\alpha}} u = 0, \qquad x\in (0,1), \ t \in (0,T), \end{align*} $\end{document}where \begin{document}$ 0\leq \alpha <1 $\end{document} and \begin{document}$ \mu\leq (1-\alpha)^2/4 $\end{document} are two real parameters. We prove the boundary null controllability by means of a \begin{document}$ H^1(0,T) $\end{document} control acting either at \begin{document}$ x = 1 $\end{document} or at the point of degeneracy and singularity \begin{document}$ x = 0 $\end{document} . Besides we give sharp estimates of the cost of controllability in both cases in terms of the parameters \begin{document}$ \alpha $\end{document} and \begin{document}$ \mu $\end{document} . The proofs are based on the classical moment method by Fattorini and Russell and on recent results on biorthogonal sequences.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here