z-logo
open-access-imgOpen Access
Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems
Author(s) -
Jun Moon
Publication year - 2022
Publication title -
mathematical control and related fields
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.658
H-Index - 21
eISSN - 2156-8472
pISSN - 2156-8499
DOI - 10.3934/mcrf.2021026
Subject(s) - mathematics , stackelberg competition , jump diffusion , stochastic differential equation , type (biology) , jump process , maximum principle , jump , stochastic control , state (computer science) , optimal control , mathematical optimization , mathematical economics , ecology , physics , algorithm , quantum mechanics , biology
In this paper, we consider linear-quadratic (LQ) leader-follower Stackelberg differential games for mean-field type stochastic systems with jump diffusions, where the system includes mean-field variables, i.e., the expected value of state and control variables. We first solve the LQ mean-field type control problem of the follower using the stochastic maximum principle and obtain the state-feedback representation of the open-loop optimal solution in terms of the coupled integro-Riccati differential equations (CIRDEs) via the Four-Step Scheme. Next, we solve the problem of the leader, which is the LQ control problem subject to the mean-field type forward-backward stochastic system with jump diffusions, where the constraint characterizes the rational behavior of the follower. Using the variational approach, we obtain the (mean-field type) stochastic maximum principle. However, to obtain the state-feedback representation of the open-loop optimal solution of the leader, there is a technical challenge due to the jump process. We consider two different cases, in which the state-feedback type control in terms of the CIRDEs can be characterized by generalizing the Four-Step Scheme. We finally show that the state-feedback type controls of the open-loop optimal solutions for the leader and the follower constitute the Stackelberg equilibrium.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here