Predator-prey systems with defense switching and density-suppressed dispersal strategy
Author(s) -
Jiawei Chu,
HaiYang Jin
Publication year - 2022
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2022582
Subject(s) - omega , combinatorics , domain (mathematical analysis) , bounded function , invariant (physics) , physics , mathematics , mathematical physics , mathematical analysis , quantum mechanics
In this paper, we consider the following predator-prey system with defense switching mechanism and density-suppressed dispersal strategy $ \begin{equation*} \begin{cases} u_t = \Delta(d_1(w)u)+\frac{\beta_1 uvw}{u+v}-\alpha_1 u, & x\in \Omega, \; \; t>0, \\ v_t = \Delta(d_2(w)v)+\frac{\beta_2 uvw}{u+v}-\alpha_2 v, & x\in \Omega, \; \; t>0, \\ w_t = \Delta w-\frac{\beta_3 uvw}{u+v}+\sigma w\left(1-\frac{w}{K}\right), & x\in \Omega, \; \; t>0, \\ \frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = \frac{\partial w}{\partial \nu} = 0, & x\in\partial\Omega, \; \; t>0, \\ (u, v, w)(x, 0) = (u_0, v_0, w_0)(x), & x\in\Omega, \ \end{cases} \end{equation*} $ where $ \Omega\subset{\mathbb{R}}^2 $ is a bounded domain with smooth boundary. Based on the method of energy estimates and Moser iteration, we establish the existence of global classical solutions with uniform-in-time boundedness. We further prove the global stability of co-existence equilibrium by using the Lyapunov functionals and LaSalle's invariant principle. Finally we conduct linear stability analysis and perform numerical simulations to illustrate that the density-suppressed dispersal may trigger the pattern formation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom