z-logo
open-access-imgOpen Access
Fast screening framework for infection control scenario identification
Author(s) -
Yohei Kakimoto,
Yuto Omae,
Jun Toyotani,
Hirotaka Takahashi
Publication year - 2022
Publication title -
mathematical biosciences and engineering
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2022574
Subject(s) - computer science , randomness , computation , identification (biology) , measure (data warehouse) , data mining , constraint (computer aided design) , support vector machine , machine learning , algorithm , mathematical optimization , mathematics , statistics , botany , geometry , biology
Due to the emergence of the novel coronavirus disease, many recent studies have investigated prediction methods for infectious disease transmission. This paper proposes a framework to quickly screen infection control scenarios and identify the most effective scheme for reducing the number of infected individuals. Analytical methods, as typified by the SIR model, can conduct trial-and-error verification with low computational costs; however, they must be reformulated to introduce additional constraints, and thus are inappropriate for case studies considering detailed constraint parameters. In contrast, multi-agent system (MAS) simulators introduce detailed parameters but incur high computation costs per simulation, making them unsuitable for extracting effective measures. Therefore, we propose a framework that implements an MAS for constructing a training dataset, and then trains a support vector regression (SVR) model to obtain effective measure results. The proposed framework overcomes the weaknesses of conventional methods to produce effective control measure recommendations. The constructed SVR model was experimentally verified by comparing its performance on datasets with expected and unexpected outputs. Although datasets producing an unexpected output decreased the prediction accuracy, by removing randomness from the training dataset, the accuracy of the proposed method was still high in these cases. High-precision predictions of the MAS-based simulation output were obtained for both test datasets in under one second of the computational time. Furthermore, the experimental results establish that the proposed framework can obtain intuitively correct outputs for unknown inputs, and produces sufficiently high-precision prediction with lower computation costs than an existing method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here