z-logo
open-access-imgOpen Access
Transformer with progressive sampling for medical cellular image segmentation
Author(s) -
Shen Jiang,
Jinjiang Li,
Zhen Hua
Publication year - 2022
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2022563
Subject(s) - segmentation , computer science , artificial intelligence , convolutional neural network , scale space segmentation , image segmentation , segmentation based object categorization , transformer , pattern recognition (psychology) , computer vision , engineering , voltage , electrical engineering
The convolutional neural network, as the backbone network for medical image segmentation, has shown good performance in the past years. However, its drawbacks cannot be ignored, namely, convolutional neural networks focus on local regions and are difficult to model global contextual information. For this reason, transformer, which is used for text processing, was introduced into the field of medical segmentation, and thanks to its expertise in modelling global relationships, the accuracy of medical segmentation was further improved. However, the transformer-based network structure requires a certain training set size to achieve satisfactory segmentation results, and most medical segmentation datasets are small in size. Therefore, in this paper we introduce a gated position-sensitive axial attention mechanism in the self-attention module, so that the transformer-based network structure can also be adapted to the case of small datasets. The common operation of the visual transformer introduced to visual processing when dealing with segmentation tasks is to divide the input image into equal patches of the same size and then perform visual processing on each patch, but this simple division may lead to the destruction of the structure of the original image, and there may be large unimportant regions in the divided grid, causing attention to stay on the uninteresting regions, affecting the segmentation performance. Therefore, in this paper, we add iterative sampling to update the sampling positions, so that the attention stays on the region to be segmented, reducing the interference of irrelevant regions and further improving the segmentation performance. In addition, we introduce the strip convolution module (SCM) and pyramid pooling module (PPM) to capture the global contextual information. The proposed network is evaluated on several datasets and shows some improvement in segmentation accuracy compared to networks of recent years.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here