Open Access
PercolationDF: A percolation-based medical diagnosis framework
Author(s) -
Junqiu Jiang,
Xuehui Yu,
Yi Lin,
Yi Guan
Publication year - 2022
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2022273
Subject(s) - computer science , inference , machine learning , data mining , artificial intelligence , representation (politics) , medical knowledge , medical diagnosis , bayes' theorem , logistic regression , recall , data science , bayesian probability , medicine , linguistics , philosophy , pathology , politics , political science , law , medical education
Goal: With the continuing shortage and unequal distribution of medical resources, our objective is to develop a general diagnosis framework that utilizes a smaller amount of electronic medical records (EMRs) to alleviate the problem that the data volume requirement of prevailing models is too vast for medical institutions to afford. Methods: The framework proposed contains network construction, network expansion, and disease diagnosis methods. In the first two stages above, the knowledge extracted from EMRs is utilized to build and expense an EMR-based medical knowledge network (EMKN) to model and represent the medical knowledge. Then, percolation theory is modified to diagnose EMKN. Result: Facing the lack of data, our framework outperforms naïve Bayes networks, neural networks and logistic regression, especially in the top-10 recall. Out of 207 test cases, 51.7% achieved 100% in the top-10 recall, 21% better than what was achieved in one of our previous studies. Conclusion: The experimental results show that the proposed framework may be useful for medical knowledge representation and diagnosis. The framework effectively alleviates the lack of data volume by inferring the knowledge modeled in EMKN. Significance: The proposed framework not only has applications for diagnosis but also may be extended to other domains to represent and model the knowledge and inference on the representation.