z-logo
open-access-imgOpen Access
A noise-immune reinforcement learning method for early diagnosis of neuropsychiatric systemic lupus erythematosus
Author(s) -
Guanru Tan,
AUTHOR_ID,
Boyu Huang,
Zhihan Cui,
Haowen Dou,
Shusheng Zheng,
Teng Zhou,
AUTHOR_ID
Publication year - 2022
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2022104
Subject(s) - artificial intelligence , support vector machine , artificial neural network , pattern recognition (psychology) , machine learning , principal component analysis , feature selection , computer science , autoencoder , classifier (uml) , reinforcement learning
The neuropsychiatric systemic lupus erythematosus (NPSLE), a severe disease that can damage the heart, liver, kidney, and other vital organs, often involves the central nervous system and even leads to death. Magnetic resonance spectroscopy (MRS) is a brain functional imaging technology that can detect the concentration of metabolites in organs and tissues non-invasively. However, the performance of early diagnosis of NPSLE through conventional MRS analysis is still unsatisfactory. In this paper, we propose a novel method based on genetic algorithm (GA) and multi-agent reinforcement learning (MARL) to improve the performance of the NPSLE diagnosis model. Firstly, the proton magnetic resonance spectroscopy ($ ^{1} $H-MRS) data from 23 NPSLE patients and 16 age-matched healthy controls (HC) were standardized before training. Secondly, we adopt MARL by assigning an agent to each feature to select the optimal feature subset. Thirdly, the parameter of SVM is optimized by GA. Our experiment shows that the SVM classifier optimized by feature selection and parameter optimization achieves 94.9% accuracy, 91.3% sensitivity, 100% specificity and 0.87 cross-validation score, which is the best score compared with other state-of-the-art machine learning algorithms. Furthermore, our method is even better than other dimension reduction ones, such as SVM based on principal component analysis (PCA) and variational autoencoder (VAE). By analyzing the metabolites obtained by MRS, we believe that this method can provide a reliable classification result for doctors and can be effectively used for the early diagnosis of this disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here