z-logo
open-access-imgOpen Access
A novel 10-gene immune-related lncRNA signature model for the prognosis of colorectal cancer
Author(s) -
Bin Ma,
Lianqun Cao,
Yongmin Li
Publication year - 2021
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2021477
Subject(s) - immune system , immunotherapy , colorectal cancer , carcinogenesis , oncology , gene signature , cancer , stage (stratigraphy) , medicine , bioinformatics , biology , gene , immunology , gene expression , genetics , paleontology
Background The tumor immune microenvironment of colorectal cancer (CRC) affects tumor development, prognosis and immunotherapy strategies. Recently, immune-related lncRNA were shown to play vital roles in the tumor immune microenvironment. The objective of this study was to identify lncRNAs involved in the immune response, tumorigenesis and progression of CRC and to establish an immune-related lncRNA signature for predicting the prognosis of CRC. Methods We used data retrieved from the cancer genome atlas (TCGA) dataset to construct a 10-gene immune-related lncRNA pair (IRLP) signature model using a method based on the ranking and comparison of paired gene expression in CRC. The clinical prognosis, immune checkpoints and lncRNA-protein networks were analyzed to evaluate the signature. Results The signature was closely associated with overall survival of CRC patients (p < 0.001 in both of the training and validating cohorts) and the 3-year AUC values for the training and validating cohorts were 0.884 and 0.739, respectively. And, there were positive correlations between the signature and age (p = 0.048), clinical stage (p < 0.01), T stage (p < 0.01), N stage (p < 0.001) and M stage (p < 0.01). In addition, the signature model appeared to be highly relevant to some checkpoints, including CD160, TNFSF15, HHLA2, IDO2 and KIR3DL1. Further, molecular functional analysis and lncRNA-protein networks were applied to understand the molecular mechanisms underlying the carcinogenic effect and progression. Conclusion The 10-gene IRLP signature model is an independent prognostic factor for CRC patient and can be utilized for the development of immunotherapy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here