Open Access
Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales
Author(s) -
Jaqueline G. Mesquita,
Urszula Ostaszewska,
Ewa Schmeidel,
Małgorzata Zdanowicz
Publication year - 2021
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2021339
Subject(s) - attractor , population , mathematics , stability (learning theory) , combinatorics , physics , mathematical analysis , demography , computer science , machine learning , sociology
In this paper, we investigate the existence of global attractors, extreme stability, periodicity and asymptotically periodicity of solutions of the delayed population model with survival rate on isolated time scales given by \begin{document}$ x^{\Delta} (t) = \gamma(t) x(t) + \dfrac{x(d(t))}{\mu(t)}e^{r(t)\mu(t)\left(1 - \frac{x(d(t))}{\mu(t)}\right)}, \ \ t \in \mathbb T. $\end{document} We present many examples to illustrate our results, considering different time scales.