z-logo
open-access-imgOpen Access
Second-order ResU-Net for automatic MRI brain tumor segmentation
Author(s) -
Ning Sheng,
Dongwei Li,
Jianxia Zhang,
Chao Che,
Jianxin Zhang
Publication year - 2021
Publication title -
mathematical biosciences and engineering
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2021251
Subject(s) - segmentation , computer science , artificial intelligence , scale space segmentation , brain tumor , image segmentation , pattern recognition (psychology) , medicine , pathology
Tumor segmentation using magnetic resonance imaging (MRI) plays a significant role in assisting brain tumor diagnosis and treatment. Recently, U-Net architecture with its variants have become prevalent in the field of brain tumor segmentation. However, the existing U-Net models mainly exploit coarse first-order features for tumor segmentation, and they seldom consider the more powerful second-order statistics of deep features. Therefore, in this work, we aim to explore the effectiveness of second-order statistical features for brain tumor segmentation application, and further propose a novel second-order residual brain tumor segmentation network, i.e., SoResU-Net. SoResU-Net utilizes a number of second-order modules to replace the original skip connection operations, thus augmenting the series of transformation operations and increasing the non-linearity of the segmentation network. Extensive experimental results on the BraTS 2018 and BraTS 2019 datasets demonstrate that SoResU-Net outperforms its baseline, especially on core tumor and enhancing tumor segmentation, illuminating the effectiveness of second-order statistical features for the brain tumor segmentation application.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here