z-logo
open-access-imgOpen Access
Guaranteed distributed machine learning: Privacy-preserving empirical risk minimization
Author(s) -
Kwabena Owusu-Agyemang,
Benjamin Appiah,
Hu Xiong
Publication year - 2021
Publication title -
mathematical biosciences and engineering
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2021243
Subject(s) - differential privacy , computer science , empirical risk minimization , computation , information privacy , minification , perturbation (astronomy) , data mining , algorithm , machine learning , artificial intelligence , computer security , programming language , physics , quantum mechanics
Distributed learning over data from sensor-based networks has been adopted to collaboratively train models on these sensitive data without privacy leakages. We present a distributed learning framework that involves the integration of secure multi-party computation and differential privacy. In our differential privacy method, we explore the potential of output perturbation and gradient perturbation and also progress with the cutting-edge methods of both techniques in the distributed learning domain. In our proposed multi-scheme output perturbation algorithm (MS-OP), data owners combine their local classifiers within a secure multi-party computation and later inject an appreciable amount of statistical noise into the model before they are revealed. In our Adaptive Iterative gradient perturbation (MS-GP) method, data providers collaboratively train a global model. During each iteration, the data owners aggregate their locally trained models within the secure multi-party domain. Since the conversion of differentially private algorithms are often naive, we improve on the method by a meticulous calibration of the privacy budget for each iteration. As the parameters of the model approach the optimal values, gradients are decreased and therefore require accurate measurement. We, therefore, add a fundamental line-search capability to enable our MS-GP algorithm to decide exactly when a more accurate measurement of the gradient is indispensable. Validation of our models on three (3) real-world datasets shows that our algorithm possesses a sustainable competitive advantage over the existing cutting-edge privacy-preserving requirements in the distributed setting.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here