z-logo
open-access-imgOpen Access
Liver vessel segmentation based on inter-scale V-Net
Author(s) -
Jinzhu Yang,
Meihan Fu,
Ying Hu
Publication year - 2021
Publication title -
mathematical biosciences and engineering
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2021217
Subject(s) - segmentation , computer science , artificial intelligence , feature (linguistics) , scale (ratio) , dice , process (computing) , key (lock) , pattern recognition (psychology) , mathematics , philosophy , linguistics , physics , geometry , computer security , quantum mechanics , operating system
Segmentation and visualization of liver vessel is a key task in preoperative planning and computer-aided diagnosis of liver diseases. Due to the irregular structure of liver vessel, accurate liver vessel segmentation is difficult. This paper proposes a method of liver vessel segmentation based on an improved V-Net network. Firstly, a dilated convolution is introduced into the network to make the network can still enlarge the receptive field without reducing down-sampling and save detailed spatial information. Secondly, a 3D deep supervision mechanism is introduced into the network to speed up the convergence of the network and help the network learn semantic features better. Finally, inter-scale dense connections are designed in the decoder of the network to prevent the loss of high-level semantic information during the decoding process and effectively integrate multi-scale feature information. The public datasets 3Dircadb were used to perform liver vessel segmentation experiments. The average dice and sensitivity of the proposed method reached 71.6 and 75.4%, respectively, which are higher than those of the original network. The experimental results show that the improved V-Net network can automatically and accurately segment labeled or even other unlabeled liver vessels from the CT images.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here