z-logo
open-access-imgOpen Access
Mathematical model of a short translatable G-quadruplex and an assessment of its relevance to misfolding-induced proteostasis
Author(s) -
Siddhartha Kundu
Publication year - 2020
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2020135
Subject(s) - proteostasis , relevance (law) , computational biology , biology , g quadruplex , computer science , neuroscience , microbiology and biotechnology , genetics , dna , political science , law
G-quadruplexes can form in protein coding and non-coding segments such as the untranslated regions and introns of the mRNA transcript of several genes. This implies that amino acid forms of the G-quadruplex may have important consequences for protein homeostasis and the diseases caused by their alterations thereof. However, the absence of a suitable model and multitude of predicted physical forms has precluded a comprehensive enumeration and analysis of potential translatable G-quadruplexes. In this manuscript a mathematical model of a short translatable G-quadruplex (TG4) in the protein coding segment of the mRNA of a hypothetical gene is presented. Several novel indices (α, β) are formulated and utilized to categorize and select codons along with the amino acids that they code for. A generic algorithm is then iteratively deployed which computes the entire complement of peptide members that TG4 corresponds to, i.e., PTG4~TG4. The presence, distribution and relevance of this peptidome to protein sequence is investigated by comparing it with disorder promoting short linear motifs. In frame termination codon, co-occurrence, homology and distribution of overlapping/shared amino acids suggests that TG4 (~PTG4) may facilitate misfolding-induced proteostasis. The findings presented rigorously argue for the existence of a unique and potentially clinically relevant peptidome of a short translatable G-quadruplex that could be used as a diagnostic- or prognostic-screen of certain proteopathies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom