Flip bifurcation of a discrete predator-prey model with modified Leslie-Gower and Holling-type III schemes
Author(s) -
Yangyang Li,
Fengxue Zhang,
Xianglai Zhuo
Publication year - 2019
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2020106
Subject(s) - bifurcation , mathematics , bifurcation theory , stability (learning theory) , discrete time and continuous time , numerical continuation , discrete system , saddle node bifurcation , transcritical bifurcation , computer science , nonlinear system , physics , statistics , algorithm , quantum mechanics , machine learning
The continuous predator-prey model is one of the main models studied in recent years. The dynamical properties of these models are so complex that it is an urgent topic to be studied. In this paper, we transformed a continuous predator-prey model with modified Leslie-Gower and Hollingtype III schemes into a discrete mode by using Euler approximation method. The existence and stability of fixed points for this discrete model were investigated. Flip bifurcation analyses of this discrete model was carried out and corresponding bifurcation conditions were obtained. Provided with these bifurcation conditions, an example was given to carry out numerical simulations, which shows that the discrete model undergoes flip bifurcation around the stable fixed point. In addition, compared with previous studies on the continuous predator-prey model, our discrete model shows more irregular and complex dynamic characteristics. The present research can be regarded as the continuation and development of the former studies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom