z-logo
open-access-imgOpen Access
Analysis of a mathematical model with nonlinear susceptibles-guided interventions
Author(s) -
Qian Li,
Yan Xiao
Publication year - 2019
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2019276
Subject(s) - mathematics , nonlinear system , stability (learning theory) , countable set , bifurcation , order (exchange) , control theory (sociology) , control (management) , computer science , pure mathematics , physics , finance , quantum mechanics , machine learning , artificial intelligence , economics
In this paper, we considered a mathematical model describing the nonlinear susceptibles-guided vaccination and isolation strategies, incorporating the continuously saturated treatment. In this strategy, we find that the disease-free periodic solution can always exist, and consequently the control reproduction number can be defined through analyzing the stability of the disease-free periodic solution. Also, we discussed the existence and stability of the positive order-1 periodic solution from two points of view. Initially, we investigated the transcritical and pitchfork bifurcation of the Poincaré map with respect to key parameters, and proved the existence of a stable or an unstable positive order-1 periodic solution near the disease-free periodic solution. For another aspect, by studying the properties of the Poincaré map, we verified the existence of the positive order-1 periodic solution in a large range of the control parameters, especially, we verified the co-existence of finite or infinite countable different positive order-1 periodic solutions. Furthermore, numerical simulations show that the unstable order-1 periodic solution can co-exist with the stable order-1, or order-2, or order-3 periodic solution. The finding implies that the nonlinear susceptibles-triggered feedback control strategy can induce much rich dynamics, which suggests us to carefully choose key parameters to ensure the stability of the disease-free periodic solution, indicating that infectious diseases die out.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here