A genetic regulatory network based method for multi-objective sequencing problem in mixed-model assembly lines
Author(s) -
Youlong Lv,
Jie Zhang
Publication year - 2019
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2019059
Subject(s) - computer science , genetic algorithm , gene regulatory network , mathematical optimization , set (abstract data type) , gene , mathematics , machine learning , biology , genetics , gene expression , programming language
This research proposes a genetic regulatory network based sequencing method that minimizes multiple objectives including utility work costs, production rate variation costs and setup costs in mixed-model assembly lines. After constructing mathematical model of this multi-objective sequencing problem, the proposed method generates a set of genes to represent the decision variables and develops a gene regulation equation to describe decision variable interactions composed of production constraints and some validated sequencing rules. Moreover, a gene expression procedure that determines each gene's expression state based on the gene regulation equation is designed. This enables the generation of a series of problem solutions by indicating decision variable values with related gene expression states, and realizes the minimization of weighted sum of multiple objectives by applying a regulatory parameter optimization mechanism in regulation equations. The proposed genetic regulatory network based sequencing method is validated through a series of comparative experiments, and the results demonstrate its effectiveness over other methods in terms of solution quality, especially for industrial instances collected from a diesel engine assembly line.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom