
Population models with quasi-constant-yield harvest rates
Author(s) -
Kunquan Lan,
Wei Lin
Publication year - 2016
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2017029
Subject(s) - constant (computer programming) , dimensionless quantity , mathematics , population , yield (engineering) , statistics , boundary (topology) , population model , logistic function , population size , sustainable yield , mathematical analysis , ecology , econometrics , computer science , demography , biology , physics , mechanics , sociology , thermodynamics , programming language
One-dimensional logistic population models with quasi-constant-yield harvest rates are studied under the assumptions that a population inhabits a patch of dimensionless width and no members of the population can survive outside of the patch. The essential problem is to determine the size of the patch and the ranges of the harvesting rate functions under which the population survives or becomes extinct. This is the first paper which discusses such models with the Dirichlet boundary conditions and can tell the exact quantity of harvest rates of the species without having the population die out. The methodology is to establish new results on the existence of positive solutions of semi-positone Hammerstein integral equations using the fixed point index theory for compact maps defined on cones, and apply the new results to tackle the essential problem. It is expected that the established analytical results have broad applications in management of sustainable ecological systems.