z-logo
open-access-imgOpen Access
Model for hepatitis C virus transmissions
Author(s) -
Elamin H. Elbasha
Publication year - 2013
Publication title -
mathematical biosciences and engineering
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2013.10.1045
Subject(s) - basic reproduction number , hepatitis c virus , transmission (telecommunications) , reproduction , virology , chronic infection , hepacivirus , immunology , biology , virus , medicine , environmental health , computer science , ecology , population , telecommunications , immune system
Hepatitis C virus (HCV) is a leading cause of chronic liver disease. This paper presents a deterministic model for HCV infection transmission and uses the model to assess the potential impact of antiviral therapy. The model is based on the susceptible-infective-removed-susceptible (SIRS) compartmental structure with chronic primary infection and possibility of reinfection. Important epidemiologic thresholds such as the basic and control reproduction numbers and a measure of treatment impact are derived. We find that if the control reproduction number is greater than unity, there is a locally unstable infection-free equilibrium and a unique, globally asymptotically stable endemic equilibrium. If the control reproduction number is less than unity, the infection-free equilibrium is globally asymptotically stable, and HCV will be eliminated. Numerical simulations suggest that, besides the parameters that determine the basic reproduction number, reinfection plays an important role in HCV transmissions and magnitude of the public health impact of antiviral therapy. Further, treatment regimens with better efficacy holds great promise for lowering the public health burden of HCV disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here