
Multiple endemic states in age-structured $SIR$ epidemic models
Author(s) -
A Franceschetti,
Andrea Pugliese,
Dimitri Breda
Publication year - 2012
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2012.9.577
Subject(s) - epidemic model , statistical physics , demography , biology , physics , sociology , population
SIR age-structured models are very often used as a basic model of epidemic spread. Yet, their behaviour, under generic assumptions on contact rates between different age classes, is not completely known, and, in the most detailed analysis so far, Inaba (1990) was able to prove uniqueness of the endemic equilibrium only under a rather restrictive condition.Here, we show an example in the form of a 3x3 contact matrix in which multiple non-trivial steady states exist. This instance of non-uniqueness of positive equilibria differs from most existing ones for epidemic models, since it arises not from a backward transcritical bifurcation at the disease free equilibrium, but through two saddle-node bifurcations of the positive equilibrium. The dynamical behaviour of the model is analysed numerically around the range where multiple endemic equilibria exist; many other features are shown to occur, from coexistence of multiple attractive periodic solutions, some with extremely long period, to quasi-periodic and chaotic attractors.It is also shown that, if the contact rates are in the form of a 2x2 WAIFW matrix, uniqueness of non-trivial steady states always holds, so that 3 is the minimum dimension of the contact matrix to allow for multiple endemic equilibria.