z-logo
open-access-imgOpen Access
A mutualism-parasitism system modeling host and parasite with mutualism at low density
Author(s) -
Yuanshi Wang,
Jiang Jiang
Publication year - 2012
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2012.9.431
Subject(s) - mutualism (biology) , parasitism , predation , functional response , biology , ecology , commensalism , predator , host (biology) , genetics , bacteria
A mutualism-parasitism system of two species is considered, where mutualism is the dominant interaction when the predators (parasites) are at low density while parasitism is dominant when the predators are at high density. Our aim is to show that mutualism at low density promotes coexistence of the species and leads to high production of the prey (host). The mutualism-parasitism system presented here is a combination of the Lotka-Volterra cooperative model and Lotka-Volterra predator-prey model. By comparing dynamics of this system with those of the Lotka-Volterra predator-prey model, we present the mechanisms by which the mutualism improves the coexistence of the species and production of the prey. Then the parameter space is divided into six regions, which correspond to the four outcomes of mutualism, commensalism, predation/parasitism and neutralism, respectively. When the parameters are varied continuously among the six regions, it is shown that the interaction outcomes of the system transition smoothly among the four outcomes. By comparing the dynamics of the specific system with those of the Lotka-Volterra cooperative model, we show that the parasitism at high density promotes stability of the system. A novel aspect of this paper is the simplicity of the model, which allows rigorous and thorough analysis and transparency of the results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here