
A model of drug resistance with infection by health care workers
Author(s) -
Avner Friedman,
Najat Ziyadi,
Khalid Boushaba
Publication year - 2010
Publication title -
mathematical biosciences and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.451
H-Index - 45
eISSN - 1551-0018
pISSN - 1547-1063
DOI - 10.3934/mbe.2010.7.779
Subject(s) - drug , drug resistance , staphylococcus aureus , medicine , antibiotics , health care , intensive care medicine , population , methicillin resistant staphylococcus aureus , emergency medicine , bacteria , microbiology and biotechnology , environmental health , biology , pharmacology , genetics , economics , economic growth
Antibiotic resistant organisms (ARO) pose an increasing serious threat in hospitals. One of the most life threatening ARO is methicillin-resistant staphylococcus aureus (MRSA). In this paper, we introduced a new mathematical model which focuses on the evolution of two bacterial strains, drug-resistant and non-drug resistant, residing within the population of patients and health care workers in a hospital. The model predicts that as soon as drug is administered, the average load of the non-resistant bacteria will decrease and eventually (after 6 weeks of the model's simulation) reach a very low level. However, the average load of drug-resistant bacteria will initially decrease, after treatment, but will later bounce back and remain at a high level. This level can be made lower if larger amount of drug is given or if the contact between health care workers and patients is reduced.