On the $ \{2\} $-domination number of graphs
Author(s) -
Abel Cabrera Martínez,
Andrea Conchado Peiró
Publication year - 2022
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
ISSN - 2473-6988
DOI - 10.3934/math.2022599
Subject(s) - domination analysis , combinatorics , mathematics , graph , integer (computer science) , omega , function (biology) , discrete mathematics , physics , computer science , quantum mechanics , evolutionary biology , vertex (graph theory) , biology , programming language
Let $ G $ be a nontrivial graph and $ k\geq 1 $ an integer. Given a vector of nonnegative integers $ w = (w_0, \ldots, w_k) $, a function $ f: V(G)\rightarrow \{0, \ldots, k\} $ is a $ w $-dominating function on $ G $ if $ f(N(v))\geq w_i $ for every $ v\in V(G) $ such that $ f(v) = i $. The $ w $-domination number of $ G $, denoted by $ \gamma_{w}(G) $, is the minimum weight $ \omega(f) = \sum_{v\in V(G)}f(v) $ among all $ w $-dominating functions on $ G $. In particular, the $ \{2\} $-domination number of a graph $ G $ is defined as $ \gamma_{\{2\}}(G) = \gamma_{(2, 1, 0)}(G) $. In this paper we continue with the study of the $ \{2\} $-domination number of graphs. In particular, we obtain new tight bounds on this parameter and provide closed formulas for some specific families of graphs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom