
Existence of nontrivial positive solutions for generalized quasilinear elliptic equations with critical exponent
Author(s) -
Shulin Zhang
Publication year - 2022
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2022543
Subject(s) - nabla symbol , exponent , mathematics , critical exponent , elliptic curve , combinatorics , mathematical physics , physics , mathematical analysis , geometry , quantum mechanics , omega , philosophy , linguistics , scaling
In this paper, we are concerned with the existence of nontrivial positive solutions for the following generalized quasilinear elliptic equations with critical growth \begin{document}$ \begin{equation*} -{\rm{div}}(g^{p}(u)|\nabla u|^{p-2}\nabla u)+ g^{p-1}(u)g'(u)|\nabla u|^{p}+ V(x)|u|^{p-2}u = h(x, u), \; \; x\in \mathbb{R}^{N}, \end{equation*} $\end{document} where $ N\geq3 $, $ 1 < p < N $. Under some suitable conditions, we prove that the above equation has a nontrivial positive solution by variational methods. To some extent, our results improve and supplement some existing relevant results.