Instability of standing waves for a quasi-linear Schrödinger equation in the critical case
Author(s) -
Xiaoguang Li,
Chaohe Zhang
Publication year - 2022
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2022539
Subject(s) - physics , combinatorics , mathematics , mathematical physics
We consider the following quasi-linear Schrödinger equation. \begin{document}$\begin{align} i\frac{\partial\psi}{\partial t}+\triangle\psi+\psi\triangle|\psi|^2+|\psi|^{p-1}\psi = 0,x\in \mathbb{R}^D, D\geq1, \;\;\;\;\;\;\;\;\;(Q)\end{align}$\end{document} where $ \psi: \mathbb{R}^+\times \mathbb{R}^D\rightarrow \mathbb{C} $ is the wave function, $ p = 3+\frac{4}{D} $. It is known that the set of standing waves is stable for $ 1 < p < 3+\frac{4}{D} $ and it is strongly unstable for $ 3+\frac{4}{D} < p < \frac{3D+2}{D-2} $. In this paper, we prove that the standing waves are strongly unstable for $ p = 3+\frac{4}{D} $. Moreover, a property on the set of the ground states of (Q) is investigated.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom