z-logo
open-access-imgOpen Access
Instability of standing waves for a quasi-linear Schrödinger equation in the critical case
Author(s) -
Xiaoguang Li,
Chaohe Zhang
Publication year - 2022
Publication title -
aims mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.329
H-Index - 15
ISSN - 2473-6988
DOI - 10.3934/math.2022539
Subject(s) - physics , combinatorics , mathematics , mathematical physics
We consider the following quasi-linear Schrödinger equation. \begin{document}$\begin{align} i\frac{\partial\psi}{\partial t}+\triangle\psi+\psi\triangle|\psi|^2+|\psi|^{p-1}\psi = 0,x\in \mathbb{R}^D, D\geq1, \;\;\;\;\;\;\;\;\;(Q)\end{align}$\end{document} where $ \psi: \mathbb{R}^+\times \mathbb{R}^D\rightarrow \mathbb{C} $ is the wave function, $ p = 3+\frac{4}{D} $. It is known that the set of standing waves is stable for $ 1 < p < 3+\frac{4}{D} $ and it is strongly unstable for $ 3+\frac{4}{D} < p < \frac{3D+2}{D-2} $. In this paper, we prove that the standing waves are strongly unstable for $ p = 3+\frac{4}{D} $. Moreover, a property on the set of the ground states of (Q) is investigated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here